Banach Spaces with the Ball Covering Property
主 讲 人 :郑本拓 教授
活动时间:07月15日15时30分
地 点 :yl23455永利102室
讲座内容:
A Banach space is said to have the ball covering property if its unit sphere can be covered by countably many open balls off the origin. The ball covering property is a property that has close relationships with the topological properties and geometric properties of Banach spaces. In this talk, we will give a review of the historical literature and present some recent advances on this topic. Open problems will be proposed, and approaches will be discussed.
主讲人介绍:
郑本拓,获美国Texas A&MUniversity数学博士学位,是美国孟菲斯大学数学系教授,主要研究方向为Banach空间理论及其应用,郑本拓教授在Banach空间理论领域获得了诸多杰出的成果。例如:解决了著名的具有无条件基Banach空间的子空间的刻画问题,回答了泛函分析国际顶级专家H.Rosenthal提出的一个三十多年的公开问题;运用Banach空间理论,对调和分析领域关于Lp空间函数平移的公开问题给出否定回答;完全证明弱有界逼近性质和强逼近性质对于任意Banach空间的等价性,解决了逼近性质资深专家Oia的猜想。郑本拓教授国际著名数学期刊Duke Math Journal,Transactions of AMS以及Journal of Functional Analysis等发表论文多篇。