
袁帅
职称/职务:讲师
来校时间:2024年8月
E-mail:ys950526@hebtu.edu.cn
研究领域:非线性泛函分析
个人简介:
袁帅,现为yl23455永利讲师。主要从事椭圆偏微分方程和非线性分析领域的研究,已在《SIAM J. Math. Anal.》、《Nonlinearity》、《Bull. London Math. Soc.》、《J. Geom. Anal.》、《Nonlinear Anal.》《Forum Math.》等期刊发表论文多篇,现主持国家自然科学基金青年项目1项。
学习工作简历:
2013.9-2017.6 燕山大学 理学学士学位 信息与计算科学
2017.9-2020.6 中南大学 理学硕士学位 应用数学
2020.9-2024.6 中南大学 理学博士学位 应用数学
教学情况:主讲本科生公共基础课:高等数学,以及本科生数学专业课:数学分析。
获得基金资助情况:
国家自然科学基金青年项目:非局部微分方程正规化解的存在性与动力学性态研究(12501208),项目研究年限:2026.1.1-2028.12.31.(主持)
发表的主要论文情况:
1.Liu, Lintao; Rădulescu, Vicenţiu D.; Yuan, Shuai*, Constraint minimizers of mass critical fractional Kirchhoff equations: concentration and uniqueness. Nonlinearity 38 (2025), 045008.
2.Liu, Lintao; Teng, Kaimin; Yuan, Shuai*, Local uniqueness of minimizers for Choquard type equations. Nonlinear Anal. 255 (2025), 113764.
3.Yuan, Shuai; Rădulescu, Vicenţiu D.; Tang, Xianhua; Zhang, Limin*, Concentrating solutions for singularly perturbed fractional (N/s)-Laplacian equations with nonlocal reaction. Forum Math. 36 (2024), 783–810.
4.Papageorgiou, Nikolaos S.; Rădulescu, Vicenţiu D.; Yuan, Shuai*, Nonautonomous double-phase equations with strong singularity and concave perturbation. Bull. Lond. Math. Soc. 56 (2024), 1245–1262.
5.Liu, Lintao; Teng, Kaimin; Yuan, Shuai*, Asymptotic uniqueness of minimizers for Hartree type equations with fractional Laplacian. J. Geom. Anal. 34 (2024), 164.
6.Chen, Sitong; Rădulescu, Vicenţiu D.; Tang, Xianhua; Yuan, Shuai*, Normalized solutions for Schrödinger equations with critical exponential growth in R^{2}. SIAM J. Math. Anal. 55 (2023), 7704–7740.
7.Yuan, Shuai*; Tang, Xianhua; Chen, Sitong Normalized solutions for Schrödinger equations with Stein-Weiss potential of critical exponential growth. J. Geom. Anal. 33 (2023), 341.
8.Yuan, Shuai; Rădulescu, Vicenţiu D.; Chen, Sitong; Wen, Lixi*, Fractional Choquard logarithmic equations with Stein-Weiss potential. J. Math. Anal. Appl. 526 (2023), 127214.
9.Yuan, Shuai; Tang, Xianhua; Chen, Sitong*, One-dimensional periodic fractional Schrödinger equations with exponential critical growth. Math. Methods Appl. Sci. 46 (2023), 695–714.
10.Yuan, Shuai; Tang, Xianhua; Zhang, Jian*; Zhang, Limin Semiclassical states of fractional Choquard equations with exponential critical growth. J. Geom. Anal. 32 (2022), 290.
11.Yuan, Shuai; Tang, Xianhua; Chen, Sitong Normalized solutions of Chern-Simons-Schrödinger equations with exponential critical growth. J. Math. Anal. Appl. 516 (2022), 126523.
12.Yuan, Shuai; Chen, Sitong Symmetric ground state solutions for the Choquard logarithmic equation with exponential growth. Appl. Math. Lett. 132 (2022), 108135.
详细介绍:
