Some extremal results for $C_{2k+1}$-free graphs
主 讲 人 :邹澜涛 博士
活动时间:10月26日09时00分
地 点 :yl23455永利D204
讲座内容:
Erd\H{o}s and Simonovits (1973) proposed the following problem: For an integer $r\geq 2$ and a family $\mathcal{F}$ of non-bipartite graphs, what is the maximum of minimum degree $\delta(G)$ among all $n$-vertex $\mathcal{F}$-free graphs $G$ with chromatic number at least $r$? The edge and spectral counterpart of this problem is to determine the maximum size and spectral radius $\lambda (G)$ among all $n$-vertex $\mathcal{F}$-free graphs $G$ with chromatic number at least $r$. In this talk, we will first introduce some relevant background and then present some of our extremal results for $C_{2k+1}$-free graphs with high chromatic number.
主讲人介绍:
邹澜涛,湖南大学博士,导师是彭岳建教授。主要研究方向是极值图论。目前,在《Journal of Graph Theory》、《Discrete Mathematics》等期刊上发表论文多篇。
